
Dynami Restarting Shemes For Eigenvalue ProblemsyKesheng Wuz Horst D. SimonzMarh 10, 1999AbstratIn studies of restarted Davidson method, a dynami thik-restart sheme was foundto be exellent in improving the overall e�etiveness of the eigenvalue method. Thispaper extends the study of the dynami thik-restart sheme to the Lanzos methodfor symmetri eigenvalue problems and systematially explore a range of heuristis andstrategies. We ondut a series of numerial tests to determine their relative strengthand weakness on a lass of eletroni struture alulation problems.The Lanzos method is an e�etive method for omputing extreme eigenvalues and theorresponding eigenvetors of large matries. In order to limit the maximum memory usageand redue arithmeti operations per iteration, it is often restarted. In this ase, the userspei�es a maximum number of Lanzos vetors to be used, say m. After m Lanzos vetorsare generated, the approximate solutions are omputed and evaluated. If they are notaeptable, a restarting sheme is used to extrat the most important information and theinformation is used in the Lanzos iterations to again generate m Lanzos vetors. The moststraightforward way to start the Lanzos algorithm is to give it one starting vetor. Earlierrestarting shemes are derived based on this observation. Variations of this sheme inluderestarting with one Ritz vetor, restarting with a linear ombination of Ritz vetors and soon [12℄. A muh more e�etive sheme named the impliit restarting sheme was disoveredby Sorensen in 1992 [13℄. One important harateristis of this sheme is that it allows anarbitrary number of vetors to be saved at restart. Another restarting sheme with similarfeatures is the thik-restart sheme [15℄ whose history an be traed bak to earlier versionsof the Davidson method [6℄. However, this feature of restarting with arbitrary number ofstarting vetors are not fully exploited until reently. To ontrast with the impliit restartingsheme, the thik-restart sheme is often alled an expliit restarting sheme.Both the impliit restarting sheme and the expliit restart sheme allow one to improvethe e�etiveness of a restarting method. The hoie of exatly what and how many vetors toyThis work was supported by the Diretor, OÆe of Siene, OÆe of Laboratory Poliy and InfrastrutureManagement, of the U.S. Department of Energy under Contrat No. DE-AC03-76SF00098.This researh used resoures of the National Energy Researh Sienti� Computing Center, whih issupported by the OÆe of Siene of the U.S. Department of Energy.zLawrene Berkeley National Laboratory/NERSC, Berkeley, CA 94720. Email: fkwu,hdsimong�lbl.gov. 1
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save is one of the determining fators in the overall e�etiveness of the eigenvalue methods.The restarting shemes disussed in this paper refer the strategies of making this hoie.More spei�ally, this paper studies a number of heuristis for deiding what and how manyvetors to save in the thik-restart Lanzos method for symmetri eigenvalue problems [16℄.Beause the strategies an not be ompared analytially, we have hosen to ompare themusing a small set of test problems. Through this set of tests, we are going to identifysome eÆient shemes for a type of eigenvalue problem arise from the eletroni struturealulations. Through our e�ort, we also hope to identify learly unsound hoies and narrowthe searh range for future users.This paper is organized as follows. We start by desribing the thik-restart Lanzosmethod in Setion 1. The test problems used are desribed in Setion 2. Setion 3 ontainsthe basi rationale behind the di�erent restarting strategies and give a brief overview of whatanalytial tools are available for devising restarting strategies. The main body of the text,setions 4 and 5, ontains the details of how to implement the four main restarting strategiesand how to modify them in order to ahieve better performane. In setion 6, we summarizethe observations made in setions 4 and 5, suggest how the four main strategies should beimplemented and demonstrate their e�etiveness on a large test problem.1 Thik-restart Lanzos methodMany well known methods for eigenvalue problems, suh as the Lanzos method [10℄, theArnoldi method [12℄, and the Davidson method [5℄, have to be restarted in large sale appli-ations either to redue the omputer memory usage or to redue the arithmeti operationsper iteration. For onveniene of disussion, an iteration of the restarted method is thispaper inludes all operations assoiated with one matrix-vetor multipliation. One onse-quene of restating these methods is that the restarted versions may take onsiderably moreiterations to reah onvergene ompared to their non-restarted ounterparts. An e�etiverestarting strategy is ruial to redue the number of iterations. In this paper, we will limitourselves to study only real symmetri or omplex Hermitian eigenvalue problems for whihthe Lanzos method is the most e�etive method. Previously, the impliit restarting shemehas been used with the Lanzos method [1, 2℄. In this paper, we will study the thik-restartLanzos method. For onveniene of disussion, we briey desribe the the two major om-ponents of the thik-restart Lanzos method, the Lanzos iterations to extend the basis andthe restarting proedure.Given a matrix A, its eigenvalue � and the orresponding eigenvetor x are de�ned byequation Ax = �x. The Lanzos method omputes approximate values to � and x whih arealso alled � and x. If there arem Lanzos vetors, they will be denoted by q1; : : : ; qm. In theproess of omputing m Lanzos vetors, the algorithm will also ompute �i; �i; i = 1; : : : ; mwhih are used later in the Rayleigh-Ritz projetion. Here is a brief desription of thealgorithm.InitializationTo start solving a new eigenvalue problem, take a starting vetor, normalize it andstore the resulting vetor as q1. Set k to zero.2



When restarting, k is set by the the restarting proedure whih also provides q1; : : : ; qk; qk+1,�1; : : : ; �k, and �1; : : : ; �k.IterateFor i = k + 1; : : : ; m,1. qi+1  Aqi,2. �i  qTi qi+1,3. If i = k + 1, qi+1  qi+1 � �iqi � kXj=1�jqj;else qi+1  qi+1 � �iqi � �i�1qi�1:4. �i  kqi+1k, qi+1  qi+1=�i.This short desription aptures the essene of the algorithm. We have ignored the detailsfor dealing with �nite preision arithmeti in partiular the re-orthogonalization proedure[16℄ beause they are not diretly relevant to the restarting strategies to be disussed. Thefollowing equations summarize the relation among the Lanzos vetors produed by thisalgorithm, (Qi = [q1; : : : ; qi℄)AQi = QiTi + �iqi+1ei; (i > k) (1)
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At the initialization step, i.e., (i = k), the following relation must be satis�ed,Aqi = �iqi + �iqk+1; i = 1; : : : ; k: (3)The value k in the above formula is alled the thikness in this paper. The simplest wayto satisfy this relation is to supply the algorithm with one starting vetor q1 (k = 0). Inthe thik-restart Lanzos method, the restarting proedure produes k orthogonal vetorssatisfying the above equation whih allows it to use arbitrary number of starting vetors.The main steps of the restarting sheme an be desribed as follows.
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1. Compute an eigen-deomposition of Tm, Tm � Y DY T . As in the Rayleigh-Ritz pro-jetion, the diagonal elements of D are the eigenvalues of Tm and the approximateeigenvalues (the Ritz values) of A.If we only want to perform onvergene test, it is possible to only ompute the last rowof Y , whih will redue the need of both the memory and the arithmeti operations.2. Based on available information, deided what and how many Ritz values are to besaved. In our program, we order the eigenvalues of Tm in asending order and theentire deision redues to pik two integers kl and kr whih indiate that d1;1; : : : ; dkl;kland dkr+1;kr+1; : : : ; dm;m are to be saved. This paper is about how to hoose kl and krsuh that the whole eigenvalue program takes the least amount of time.3. Let k = kl + m � kr. Denote the Ritz values to be saved as �̂1, �̂2, : : :, �̂k, andthe orresponding olumns of Y as y1, . . . , yk. The Ritz vetors an be omputedas q̂1 = Qmy1, : : :, q̂k = Qmyk, and q̂k+1 � qm+1. In addition, �̂1 = �mym;1, : : :,�̂k = �mym;k.This algorithm generates Ritz pairs as in the standard Rayleigh-Ritz projetion. Thedi�erene is in what Ritz values are atually omputed. In the standard Rayleigh-Ritzprojetion, the number of Ritz pairs to be omputed is the number of eigenpairs wanted.If the smallest eigenvalues are wanted, than the smallest Ritz values are saved. If thelargest eigenvalues are wanted, than the largest Ritz values are saved. In the thik-restartproedure, we typially save some largest ones and some smallest ones no matter whih endof the spetrum we are interested in, and usually more Ritz pairs are saved than the standardase.Beause the matrix Tm is not tridiagonal in the thik-restart Lanzos algorithm, morearithmeti operations are need to ompute an eigenvalue deomposition for it. If the basissize m is relatively small, the extra amount of arithmeti will be negligible ompared to otheroperations in the restarted Lanzos algorithm. For this reason, we will not disuss this issuefurther.2 Test problemsThrough out this paper we will use a small number of test problems repeatedly. They aredesribed in this setion.The three test problems listed in Table 1 ome from two soures. The matrix si4 andsi6 are from simulation of eletroni properties of silion atom lusters [3, 4℄. These tworeal symmetri matries are generated from the �rst step of the Self-Consist Field (SCF)iterations. They are relatively small so we an perform a large number of tests withoutonsuming signi�antly amount of omputer time. During our tests, we always omputethe 12 smallest eigenvalues and the orresponding eigenvetors of si4 test problem and the16 smallest eigenvalues and the orresponding eigenvetors for si6 test problem. Test prob-lem InGaAs9k is generated from simulation of a 9000-atom InAs quantum dot in an GaAs4



Table 1: Information about the test problems.NAME N NNZ Commentsi4 4451 84918 Ab Initio simulation of a four-silion lustersi6 7949 151524 Ab Initio simulation of a six-silion lusterInGaAs9k 137919 (full) empirial pseudopotential simulation of anInGaAs quantum dotsurrounding [17℄. This test problem has a omplex Hermitian matrix whih is not stored ex-pliitly. The matrix-vetor multipliation is performed through Fast Fourier Transformations(FFT).These three test problems are hosen beause the authors are involved in projets thatprodue similar matries. The seletion of the test problems is small. However, by restritingto these problems, we are able to perform a more thorough analyses of the di�erent restartingstrategies whih may ultimately reveal more about the restarting strategies.Sine all test problems ompute the smallest eigenvalues, we desribe the restarting strate-gies based on �nding the smallest eigenvalues. It should be straightforward to extended itto the ase of �nding the largest eigenvalues. When omputing the smallest eigenvalues, thesimplest thing to do is to always save a �xed number of the smallest Ritz pairs. This simplerestarting sheme is alled the �xed-thikness sheme in this paper. To measure the dynamirestarting shemes, we will ondut a series of tests to determine the optimal thikness forthe �xed-thikness sheme. The tests are run with the starting vetor [1; 1; : : : ; 1℄T . The Ritzpairs are delared onverged if their residual norms are less than p�kAk, where � is the unitround o� error whih is about 2:2 � 10�16, and the norm of the matrix (kAk) is estimatedby the largest (absolute) Ritz value ever omputed in the Lanzos method. All future testswill be performed using the same starting vetor and onvergene tolerane.For the two smaller test problems, si4 and si6, we have onduted the tests with threedi�erent basis size m = 20; 50; 100. The optimal thikness based on either the time or thenumber of matrix-vetor multipliations are listed in Table 2. In the table, the numberof matrix-vetor multipliations is denote by MATVEC. The top half of Table 2 showsresults that use the minimal number of matrix-vetor multipliations and the bottom halfof the table shows results that use the minimal amount of omputer time. These results areobtained by trying all possible values of k under eah given m (neig � k � m�3). We wouldlike to devise a set of strategies that an automatially hoose an appropriate thikness thatperforms no worse than results ahieved here.The timing results in Table 2 are measured on a SGI Onyx 2 running at 195 MHz. Alltests involving si4 and si6 are run on this mahine. Tests involving the quantum dot problemwill be run on a Cray T3E parallel mahine to provide a di�erent prospetive.We have onduted similar experiment with the quantum dot test problem to omputethe �ve smallest eigenvalues and the orresponding eigenvetors. Figure 1 shows the timeand the number of matrix-vetor multipliations used to solve the InGaAs9k test problemwith di�erent �xed thikness. A basis size (m) of 25 is used in this test. The timing results5



Table 2: The minimal time and number of matrix-vetor multipliations used to solve twosilion luster test problems using thik-restart Lanzos method with �xed thikness (k =kl; kr = m). minimal number of MATVECm = 20 m = 50 m = 100MATVEC k MATVEC k MATVEC ksi4 488 16 274 34 268 44asi6 1621 16 274 22 271 43minimal time (seonds)m = 20 m = 50 m = 100time k time k time ksi4 5.18 12 3.19 19 4.59 14si6 50.0 16 7.90 16 11.9 42a268 MATVEC is also used when k is 58 and 72.are obtained on 32 proessors of a Cray T3E 900. The optimal thikness in this ase is12 whih ahieves both minimal number of matrix-vetor multipliations (1806) and theminimal amount of CPU time (179.6 se). This is a muh large test problem than the twosilion luster ones and the matrix-vetor multipliations take up a muh large portion ofthe total time too. Beause the matrix-vetor multipliations dominate the overall time,minimizing the number of iterations also minimizes the total time for this test problem.Now that we have established the performane target for the test problems, next we willexam what an be used to guide our hoie of restarting strategies.3 Rationale for the heuristisIn our version of the thik-restart sheme, see page 3, the deision to be made is to hoosetwo integers kl and kr, see also Figure 2. This setion will review the theoretial tools thatan guide us in making this deision. We will see how they are used and why additionalheuristis are needed.There are two theoretial tools that an be used to analyze the hoies, the polynomial�lter and the approximate deation. The bases vetors generated by the impliitly restartedArnoldi method and the thik-restart Lanzos method are always orthogonal bases of someKrylov subspae, K(A; v) [13, 16℄. The starting vetor v hanges after eah restart. Thepolynomial �lter refer to the relationship between these starting vetors where the vetorv before and after a restart is related by a polynomial of the form �m�ki=1 (A � ÆiI). Thesalar values Æi are alled the shifts. In the impliitly restart Lanzos method, they an bearbitrarily hosen. In the thik-restart Lanzos method, they are the Ritz values disardedduring restart. Based on this polynomial relation, the optimal hoie for the shifts arethe Leja points [1℄. The polynomial �lter argument has strong theoretial foundation andprograms based on this mehanism are found to be e�etive in pratie [1℄. However, this6
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Figure 2: Shematis of seleting deision during thik-restart.analysis does not give an lear indiation of exatly how many shifts to apply or how manyvetors to save when more than one eigenvalue is omputed.Another theoretial tool that an be used to guide the design of dynami restartingheuristis is the approximate deation feature of the Ritz vetors [9℄. To ompute eigenvaluesnear �, the Ritz values near � should be saved. Morgan's analyses indiate that the saved Ritzvetors approximately deate the spetrum, inrease the e�etive separation between thewanted eigenvalues and the rest of the spetrum, and onsequently inrease the onvergenerate of the restarted method [9℄. The dynami thik-restart sheme used in the dynamithik-restart Davidson method is suessful example of using this argument [15℄.Sine the Lanzos method is only e�etive in omputing the extreme eigenvalues, our7



implementation of the thik-restart sheme only save some largest Ritz values and somesmallest Ritz values. When omputing the smallest eigenvalue, the e�etive gap ratio usedto devise the dynami thik-restart sheme is [15℄ = �kl � �1�kr � �1 (kl < kr � m): (4)Based on the approximate deation argument, saving more nearby Ritz vetors willresult in faster onvergene rate for the smallest Ritz value. Obviously the maximum gapratio is ahieved when kl is kr � 1. However, in this ase, the e�etive gap ratio is a wildoverestimate of its atual value. In addition, when kl = kr � 1, an iteration of the restartedLanzos algorithm is expensive beause the Rayleigh-Ritz projetion is performed after everymatrix-vetor multipliation and it always omputes m�1 Lanzos vetors. Figure 1 learlyindiates that as k approahes m both CPU time and the number of iterations inrease.Similar to the polynomial �lter argument, the approximate deation argument does notsuggest an e�etive hoie of how many Ritz pairs to saved either. The innovation of thispaper is to augment these theoretial arguments with heuristis to make e�etive hoiesduring restart.To redue the time and iterations in the dynami thik-restart Davidson method, thedevelopers of the dynami thik-restart Davidson method require that kr � kl + 3 [15℄.Beause the funtion  is a monotoni funtion of kl and kr, if no Ritz values are exatlyequal to eah other, this requirement leads to 3 Ritz pairs being disarded at every restart.The hoie of always disarding 3 Ritz pairs and saving m � 3 is somewhat arbitrary. Oneway to remove this arbitrariness is to develop an empirial formula for deiding how manyRitz vetors should be saved. After eah iteration, the residual norm is expeted to dereaseby a fator proportional to e� by the de�nition of  [9℄. Maximizing  is equivalent tomaximizing the residual norm redution for eah iteration. An alternative is to minimize theresidual norm at the end of an entire restarted loop. If k Ritz pairs are saved, after m � kiterations, the residual norm will derease by a fator proportional to e�(m�k) . Minimizingthe residual norm at the next restart is equivalent to maximizing the quantity � � (m�k).It is lear that � is not a monotoni funtion unless the Ritz values are exponential funtionsof their indies. Therefore maximizing � should provide appropriate hoies for kl and kr.These approximate deation based heuristis are relatively simple. Next we will see howwell they atually work. There are also obvious limitations on these shemes. For example,the e�etive gap ratio are only meaningful if the saved Ritz values are lose to the atualeigenvalues. Typial at least some of the saved Ritz values are not aurate, it might behelpful to take their errors into aount. We will explore this and related issues in setion 5in order to enhane the robustness of our restarting strategies.4 Implementing the heuristisThis setion desribes the details of how to implement the heuristis as atual omputerprograms. More spei�ally, we will onentrate on restarting hoies based on individualheuristis. Here is a list of four heuristis that we plan to use.8



1. Index based sheme { develop an empirial formula for deiding what are the appro-priate values for kl and kr.2. Residual norm based sheme { save Ritz pairs that are near the wanted ones and alsohave relatively small residual norms.3. Maximizing the gap ratio .4. Maximizing progress, i.e., �nding kl and kr that maximize the value � � (m� k).Typially, the restarted Lanzos algorithm is used to ompute a number of eigenvaluesat a time. Most of the heuristis require one Ritz pair being identi�ed as the one urrentlybeing omputed. This idea is similar to targeting in the Davidson method and we will alsoall the seleted Ritz pair the target in this paper. When omputing a number of smallesteigenvalues, the target is the smallest Ritz value that does not satisfy the onvergene riteria.Clearly, other hoies are possible. However, this simple hoie appears to work reasonablywell for the test problems. We will be using this hoie throughout the rest of the disussion.When deiding the parameters needed to make these heuristis into programs, we will usethe two smaller test problems, si4 and si6. The objetive of tuning these restarting shemesis to ahieve the performane listed in Table 2.4.1 Index based shemeThe rationale for this sheme is to save Ritz pairs near the wanted eigenvalues. The keyhere is to develop an reasonable formula that an ahieve good overall performane. Forsimpliity, if the smallest eigenvalues are wanted, we only save the smallest Ritz values andtheir orresponding Ritz vetors. Using the simple formulae onsidered here, if there isonly one eigenvalue to ompute, this sheme will revert bak to the �xed-thikness sheme.These formulae are based on the number of Ritz pairs already onverged n, the number ofeigenvalues wanted neig, and the basis size m. It di�ers from other three dynami shemesin that it does not use information about the Ritz values or the residual norms. Given amaximum basis size m, if the thikness k is kept onstant, the optimal value of k is oftennear m=2 for moderate size neig and m, see for example Figure 1. Based on this observation,our �rst formula for hoosing k is k = n + (m� n)=2: (5)MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 536 282 301 4.65 3.29 7.21si6 1561 282 403 34.9 8.18 18.7The above table shows the iterations and time used by the thik-restart Lanzos methodusing this restarting strategy. Compared with the results in Table 2, the number of iterations(matrix-vetor multipliations) and the time are lose to the optimal values ahieved with�xed thikness for basis sizes of 20 and 50. However, when the basis size is 100, signi�antly9



more time is used in this ase. From the last olumn of Table 2 we see that k = 40 seems tobe a good hoie for both test problems. Base on this observation, we proposed to graduallyvary k from m=2 to 2m=5 as m=neig inreases, for example,k = n + (m� n)(25 + neig10m): (6)The time and iterations used by the thik-restart Lanzos method with this sheme of hoos-ing k are MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 548 304 275 4.80 3.38 5.86si6 1561 279 276 35.1 7.82 11.9From this table, we see that hoosing the thikness aording to Equation 6 leads to betterperformane ompared to using Equation 5 for si6, but not for si4. The iterations and timeused by this hoie of thikness are omparable to the results shown in Table 2 for mostases. Only in one ase, solving si4 test problem with m = 100, the time used is signi�antlymore than in the optimal �xed thikness ase. Sine the value of k that ahieves minimaltime is very lose to neig for si4 test problem. We deide to test the following formula as wellk = n + neig: (7)The results of using this hoie is as follows,MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 456 297 298 5.27 3.09 4.58si6 1741 277 416 44.7 7.44 16.1We see that this hoie work well for m = 50 but not so well for smaller m and it alsoauses more time to be used for si6 test problem with m = 100. We have tested many otherhoies to predit the optimal k based on neig, n, m and parameters other then Ritz valuesor residual norms. None of them an onsistently generate better performane than usingEquation 6. We believe this is beause one formula an not predit the optimal k valuesfor the two test problems. This suggests that a robust strategy must take the spetruminformation into onsideration. For the moment, we aept Equation 6 as the formula toimplement this strategy.4.2 Mimiking ARPACKThe eigenvalue pakage ARPACK has an implementation of the impliitly restarted Lanzosmethod for symmetri eigenvalue problems [8℄. The restarting sheme in ARPACK alsodetermines how many vetors in a similar manner as desribed in previous subsetion. Herewe will briey examine the sheme used in ARPACK and see how Equation 6 works inARPACK. 10



Table 3: The time and number of matrix-vetor multipliations used by ARPACK to solvethe si4 and si6 test problems.MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 523 308 343 10.1 7.0 11.5si6 3373 421 471 155.6 20.7 31.0In version 2.4 (dated 07/31/96) of ARPACK, if there is no eigenvalue with zero residualnorm, the seletion of number of vetors to save is based on the following formula,k = neig +min(n; (m� neig)=2): (8)In addition to the above formula, there is also a speial ase when neig = 1. Sine we alwaysompute more than one eigenvalue, the speial ase is not relevant to our test problems.By seleting k using the above equation, the thik-restart Lanzos method uses followingiterations and time to solve the two silion luster test problems.MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 402 299 293 4.43 3.21 4.79si6 2280 283 405 66.4 7.87 15.9This imitation of ARPACK has very similar performane to the sheme depited byEquation 7. The atual performane of ARPACK is shown in Table 3. Beause of di�er-enes in the onvergene test, our restarted Lanzos method does not use the same time oriterations1. When omputing neig smallest eigenvalues, during onvergene test, ARPACKperforms the test on all neig smallest Ritz values and n is the ount of how many havesatis�ed the onvergene riteria. In our implementation of the restarted Lanzos method,we perform the onvergene test on one Ritz pair at a time until one fails the test or allwanted ones have satis�ed the onvergene riteria. In other words, n is the size of the lead-ing group of Ritz pairs that are onverged. Beause of this di�erene, the two onvergenetests will report di�erent n even if all the Ritz pairs are exatly the same. This di�ereneauses the di�erent number of Ritz pairs to be saved and ultimately auses the two methodto behave di�erently.To demonstrate that our restarting shemes an be easily used in ARPACK, we modifyARPACK (dsaup2.f) to use Equation 6 instead of Equation 8. The iterations and timeused by this modi�ed version of ARPACK are1Both ARPACK and our thik-restart Lanzos program (TRLAN) are ompiled with the same ags(-mips4 -64 -Ofast=IP27 -OPT:alias=restrit) and linked with the same libraries (-L/usr/lib64-lomplib.sgimath). The matrix-vetor multipliations of the Compressed Sparse Row (CSR) matriesuse the same funtion from SPARSKIT [11℄. Examining the hardware event ounters through perfex re-veals that both TRLAN and ARPACK run at about the same speed (45MFLOPS for si4 m = 100) butARPACK uses more oating-point operations (ARPACK 5:06� 108 FLOP, TRLAN 2:41� 108 FLOP, si4,m = 100). 11



MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 450 308 343 6.47 6.01 10.2si6 1338 427 471 45.6 18.3 28.4In this test, the number of iterations used by ARPACK is signi�antly redue when thebasis size is small, see Table 3. When the basis size is large, the di�erene is small beause thenumber of restarted loops are the same before and after the modi�ation. Eah ARPACKrestarted loop builds a basis of size m before performing onvergene test, a number ofunneessary matrix-vetor multipliations were used before the last onvergene test.In this paper, we use the thik-restart Lanzos method to demonstrate that a goodrestarting sheme is useful. The brief digression here demonstrates that a good restartingsheme will bene�t the impliitly restarted Lanzos method as well. In fat, this should betrue for all restarted methods.4.3 Save nearly onverged Ritz pairsThis strategy tries to save the Ritz pairs that are lose to the wanted eigenvalues and arealso loser to onvergene than an average Ritz pair. The main design hoie here is whatresidual norms are small enough to be saved. To make the omparison onrete, we need tohave referene values. One natural referene value is the maximum residual norm. ThoseRitz pairs with similar residual norms probably should be ignored. As the referene valuefor what should be saved, we use the residual norm of the target Ritz pair. We have deidednot to use the onvergene riteria to determine this referene value beause the onvergeneriteria may not always inlude an expliit ondition on the residual norms, and even thereis one the atual residual norms may always be signi�antly larger than the residual normtolerane. With two referene values, now we an try to establish a formula for determiningwhat residual norms are small enough to be saved.Let rmax denote a residual vetor with the largest norm and rt be the residual vetorof the target where t is its index. As usual, the Ritz values are in asending order. Whenomputing the smallest eigenvalues, we will save Ritz pairs 1; : : : ; kl (kr = m) if krik < s,(i = t + 1; : : : ; kl). The values of s is determined ass = max(prmaxrt; 2rt+1): (9)The value of s is usually prmaxrt. To ensure that at least one additional Ritz pair beyondthe target is saved, we added the term 2rt+1. During the atual searh for kl, we also makesure that kl � m� 3. In addition, s must be less than krmaxk. There are two ases where sis greater or equal to krmaxk, krtk = krmaxk or 2krt+1k � krmaxk. In either ase, we revertbak to the strategy desribed in subsetion 4.1.We enapsulate all above onditions in a short program and use it in the thik-restartLanzos method. The following table displays the time and matrix-vetor multipliationsused to solve the two smaller test problems.
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MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 548 304 275 4.87 3.37 6.02si6 1561 279 276 35.1 7.74 12.1The time and number of matrix-vetor multipliations used to solve the two test problemsare lose to those using Equation 6. Solving si4 test problem with m = 100 again usesonsiderably more time than the optimal time shown in Table 2, it indiates that this residualnorm based sheme has similar shortomings as the previous one.We attempted to use di�erent formulae to ompute s, however, none of them an vary thetest results signi�antly. Thus, we deide to use Equation 9 for implementing this strategy.4.4 Maximizing the e�etive gap ratioThe most straightforward way of implementing this strategy is to evaluate the gap ratio for all pairs of kl and kr and then selet one pair that gives the maximum . Sine  is amonotoni funtion of kl and kr, there is no need to searh through all possible ombinations.In the implementation used for the dynami thik-restart Davidson method, kr is requiredto be larger than or equal to kl + 3. In this ase, we only need to ompare di�erent gapratios by always setting kr = kl + 3, whih signi�antly redues the number of omparisonsneeded. The following table lists the time and matrix-vetor multipliations used with thishoie of kl and kr. MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 407 293 280 5.65 10.6 61.1si6 1522 347 271 44.9 25.7 51.5Similar to what is observed in dynami thik-restart Davidson method, this partiularimplementation of dynami thik-restart sheme is e�etive in reduing the number of matrix-vetor multipliations but is not very e�etive in reduing the exeution time of wholeeigenvalue method. Table 4 shows the minimal time and iterations ahieved if we �rstdetermine the determine the thikness then maximize . In this ase, the minimal iterationsare ahieved with about the same thikness as those in Table 2 and the minimal times areahieved with slightly smaller k than those in Table 2. Needless to say, the optimal resultsahieved by using di�erent k is onsiderably better than always save m � 3. The onlyexeption is using m = 20 to ompute 16 eigenvalues of si6 where both shemes save 17 Ritzvetors. In addition to �rst pik the thikness before maximizing , there are many ways toenhane the e�etiveness of this strategy and we will onsider them in the next setion.4.5 Maximizing �There is no free parameter in determining the maximum �. We use a brute-fore searhingsheme to ompare all pairs of kl and kr to �nd a pair that maximizes �. In our implemen-tation, we have the following restrition on kl and kr, neig � kl � kr�3. The following tablelists the test results of using this sheme. 13



Table 4: The minimal time and number of matrix-vetor multipliations used to solve thetwo silion luster test problems by �rst deiding how many Ritz pairs to save and thenhoose those that maximize the e�etive gap ratio.minimal number of MATVECm = 20 m = 50 m = 100MATVEC k MATVEC k MATVEC ksi4 443 17 288 36a 268 44bsi6 1522 17 274 32 271 43minimal time (seonds)m = 20 m = 50 m = 100time k time k time ksi4 4.57 13 3.13 19 4.53 14si6 44.9 17 7.87 22 11.8 43aThe k value of 43 an also ahieve the minimum number of matrix-vetor multipliations.bThe k value of 58, 72, 76, 79, 86, 88, 92, 93, 96 an also ahieve the minimum number of matrix-vetormultipliations.The k value of 81, 91, 97 an also ahieve the minimum number of matrix-vetor multipliations.MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 413 295 285 5.31 4.34 9.49si6 1495 488 403 42.3 18.9 23.4Compared to the previous ase of maximizing the e�etive gap ratio with k = m � 3,this sheme uses more matrix-vetor multipliations but less time. However, the results arenot as good as the optimal results shown in Tables 2 or 4. We believe the main reason forthis mediore performane is that the e�etive gap ratio de�ned by the Equation 4 is notaurate when the saved Ritz values are far from the orresponding eigenvalues. For thisreason, most of tehniques used to enhane the sheme of maximizing  an also be used toenhane this one.5 Combining di�erent shemesIn previous setion, we have examined how to implement the four heuristis. Tests showthat the individual heuristis works fairly well by themselves but they do not always lead tothe \optimal" performanes. The objetive of this setion is to explore a number of ways ofombing the di�erent heuristis to generate more robust strategies.
14
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MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 548 304 272 4.87 3.52 5.86si6 1561 279 276 35.0 7.82 11.9From this simple test we see that saving only onverged unwanted eigenvalues does notsigni�antly alter the overall performane of the restarted Lanzos method. There is onlyone ase where the modi�ed sheme redues the number of matrix-vetor multipliations,however, more time is used in the same ase.Part of the reason that saving only onverged unwanted Ritz values does not work well isthat the unwanted ones are not omputed to high auray in the restarted Lanzos method.This is espeially true when the basis size m is relatively small. One sheme to overomethis problem is to always save a �xed number of unwanted Ritz pairs. The next table isgenerated by always saving one unwanted Ritz pair.MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 548 304 272 4.87 3.52 5.86si6 1561 279 276 35.0 7.82 11.9The time and the iterations in this table are fairly lose to those of the unmodi�ed shemeshown in subsetion 4.1. Beause of this, we deided to save two unwanted Ritz pairs instead.The iterations and time used with this modi�ation areMATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 539 285 267 5.24 3.26 5.84si6 2468 413 432 79.4 11.9 19.7Saving two unwanted Ritz pairs in addition to a number of wanted Ritz pairs redues thenumber of matrix-vetor multipliations when solving si4 test problem. However, more timewere used in most ases. A more exible sheme is needed to deide how many unwantedRitz pairs to save. The rationale behind the sheme desribed in subsetion 4.1 is to save anumber of unonverged ones in addition to the onverged ones. Next we onsider a similarsheme for the unwanted Ritz pairs. Let nu denote the number of unwanted Ritz values thathave onverged. We save nu + 1 unwanted Ritz values in the next set of tests. The numberof iterations and time are listed in the following table.MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 527 292 268 5.16 3.33 5.98si6 3407 423 271 111.2 12.1 11.8This modi�ation redues the matrix-vetor multipliations used when the basis size is 50and 100, but it does not always redue the time even when the numbers of iterations areredued. The following are results of applying the same modi�ation to the sheme of savingnearly onverged wanted Ritz values, see subsetion 4.3.16



MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 527 292 268 5.08 3.33 5.96si6 3407 423 271 113.1 12.1 11.8For the two heuristis that do not initially save unwanted Ritz pairs, saving unwantedones are helpful in reduing number of matrix-vetor multipliations in some ases. Sinemore Ritz pairs are saved, an iteration on average uses more arithmeti operations thanbefore, therefore the modi�ed shemes often uses more time overall.The shemes desribed in setions 4.4 and 4.5 save a number of unwanted Ritz values bydesign. Is there a bene�t to not saving those unwanted ones? By disarding the unwantedRitz pairs, the number of vetors saved will be smaller than before. This may redue theost of restarting and redue the overall exeution time. The following table reords theiterations and the time used to solve the test problems with a sheme that �rst maximizes (k = m� 3) and then reset kr to m,MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 390 298 269 4.01 5.15 23.0si6 2134 444 399 66.9 17.6 33.1This modi�ation to the sheme of maximizing gap ratio redues the exeution time of therestarted Lanzos method, but inreases the number of iterations in most test ases. Similarmodi�ation is also applied to the sheme of maximizing �, see subsetion 4.5. The timeand the iterations used to solve the two test smaller problems areMATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 618 305 277 6.04 3.72 7.32si6 1819 466 389 55.5 15.0 19.3We see that more iterations are used with this modi�ation ompared to the original shemeshown in subsetion 4.5 when the basis size is relatively small (m = 20; 50). Less time isused when the basis size is larger, (m = 50; 100). However, even with this modi�ation, thesheme of maximizing � is not able to ahieve the optimal performane shown in table 2.Overall, saving unwanted Ritz pairs using the simple shemes desribed in this setion isbene�ial only in a small number of ases. Based on this set of tests, there is no reason tohange the four strategies to inlude or to exlude unwanted eigenvalues.5.2 Reduing time while maximizing gap ratioIn subsetion 4.4 we pointed out the need of dynamially hoosing the number vetors to savewhen maximizing the e�etive gap ratio. This setion will explore ombining the observationsmade in subsetions 4.1 and 4.4 to automatially ahieve the optimal timing results shownin Table 4. 17



The �rst test uses Equation 6 to determine the number of Ritz pairs to be saved, thenmaximize the gap ratio  under the onstraint that k Ritz pairs will be saved. The iterationsand time used by the thik-restart Lanzos method with this restarting sheme are shownnext. MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 908 305 278 9.09 3.46 5.88si6 3159 283 278 69.7 8.02 12.1Clearly, when the basis size is relatively small, say m = 20, muh more time is usedwith this sheme. In fat, when the basis size is small (m = 20), none of the variants ofmaximizing gap ratio uses less time than the simple index based shemes, see subsetion 4.1.When the basis size is larger, m = 50 and m = 100, this ombined sheme uses about thesame amount of time as shown in subsetion 4.1 but more time than the optimal ase shownin Table 4.The seond test uses Equation 7 to determine the number of Ritz pairs to be saved, thenmaximize the gap ratio  under the onstrain that k Ritz pairs will be saved. The resultingnumber of iterations and time are listed in the following table.MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 493 293 292 6.15 3.18 4.68si6 1335 280 403 39.0 7.78 15.7This set of results are again lose to simply saving k smallest Ritz values, see subsetion 4.1.Maximizing � with a �xed k is same as maximizing . For this reason, there is no need toapply the same modi�ation to the sheme of maximizing �. However, in the implementationused to produe the results shown in subsetion 4.5, we limited kl � kr � 3. When kland kr are lose to eah other, the value of � is signi�antly larger than its atual value.To avoid this situation, we mandate a larger separation between kl and kr, for example,kl � kr � (m� n)=2. The test results of using this modi�ed version of maximizing � areMATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 468 287 294 4.58 3.42 6.73si6 2024 511 403 65.0 15.2 18.7We see that this hoie works reasonably well for si4 test problem but not so well for si6test problem. Using the onstraint kl � kr � (m� n)=2, the number of Ritz pairs saved isguaranteed to be less than (m + n)=2. When the basis size is small, this leads to too fewRitz pairs being saved.The next modi�ation relax the searh range to kl � kr � min(m � neig; 2(m � n)=5).This hange inreases the limit on k and allows more Ritz pairs to be saved. This addedexibility helps to redue the time and iterations used to solve the si6 test problem as shownin the following table. 18



MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 471 297 274 4.77 3.59 5.83si6 1209 456 276 32.2 13.9 13.1By ensuring a large separation between kl and kr, we are able to ahieve muh betterperformane than allowing them to be arbitrarily lose. However, we have not ahieved theperformane target shown in Table 4.5.3 Ensuring onvergeneThe shemes desribed in subsetions 4.1, 4.2 and 4.3 do not use the Ritz values whendeiding the thikness. One simple way of taking the Ritz values into aount is to ensurethat a reasonably large gap ratio is ahieved. The goal of this modi�ation is to ensurethat the wanted eigenvalues an be omputed within spei�ed number of iterations. If theresidual vetor of the urrent target is rt, the e�etive gap ratio is , and the toleraneon residual norm is , then the number of iterations required to make the target onvergemay be estimated as ln(krtk=)=. If n is the number of Ritz pairs already onverged andnmatve is the number of matrix-vetor multipliations (iterations) used so far, the averagenumber iterations to ompute eah pair is (nmatve + ln(krtk=)=)=(n + 1). Assuming therest of eigenvalues are equally diÆult to ompute, the total number of iterations needed toompute all wanted eigenvalues isneig(n + 1)  nmatve + ln(krtk=) ! :The maximum number of iterations to be used is usually spei�ed by the user. From theabove expression we an derive the desired  to ensure solutions are found within the spei�ednumber of iterations. It is possible that the quantity nmatveneig=(n + 1) is larger than themaximum iterations allowed. In this ase, the above formula will ompute an invalid ( < 0). If this happens, we ompute a minimal  that will ensure the urrent target willonverge in the remaining iterations. In addition, we always make sure that at least threeRitz pairs are disarded during restart.The �rst test to inorporate this heuristi is implemented as a modi�ation to the simpleindex based sheme. The number of Ritz pairs to save is �rst omputed using Equation 6.Additional Ritz pairs are saved to make sure the desired minimal  is ahieved. The follow-ing table lists the number of iterations and time used to solve the two silion luster testproblems. MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 488 304 275 4.29 3.70 5.91si6 1369 279 276 32.8 7.86 11.9When the basis size is small (m = 20), the performane of the restarted Lanzos methodwith this modi�ation is better than without it, see subsetion 4.1. When basis size is larger,19



m = 50; 100, the performane di�erenes is fairly small. The reason is that with large basissize, Equation 6 already leads to large enough gap ratio and the modi�ation does not hangethe thikness used.When the basis size m is 50 or 100, Equation 7 presribes a smaller thikness and thismay lead to less time being used. The next test uses the smaller value of Equation 6 and 7,kl = kx; kr = m;kx � n +min�(m� n)(25 + neig10m); neig� ; (10)then modi�es the thikness to ensure the minimal gap ratio is ahieved. The test yields thefollowing results. MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 488 297 298 4.29 3.01 4.62si6 1369 277 416 32.8 7.40 16.0When the basis size is 50 or 100, the time used by this ombined sheme is very lose to thoseused with Equation 7 alone. This is again beause the modi�ation to ensure the minimalgap ratio did not hange the thikness.The same modi�ation an be applied to the sheme of saving nearly onverged Ritzpairs as well, see subsetion 4.3. The following table lists the test results.MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 488 304 275 4.26 3.51 5.96si6 1369 279 276 32.9 7.81 12.0From all the above tests, we see that adding this modi�ation is useful when the basissize is small. When the basis size is large, our dynami thik-restart sheme already ahievethe desired e�etive gap ratio, therefore the additional modi�ation does not hange theatual number of Ritz pairs saved.5.4 Using biased estimateThe omputed e�etive gap ratio an be muh larger than its atual value when the Ritzvalues are di�erent from the orresponding eigenvalues. Here we will use an alternativeformula for ompute the gap ratio to see whether or not we an generate more e�etiveshemes.If the residual vetor of a Ritz pair is r, then the atual eigenvalue is in the range of(��krk; �+krk) whih is often alled the trust region [7, 10℄. In fat, if we want to omputethe smallest eigenvalue and �1 is the smallest Ritz value, the atual eigenvalue is most likelyin the range of [� � krk; �℄. In this ase, we an use � � krk as the biased estimate ofthe eigenvalue [14℄. This biased estimate has been suessfully used as the shift in for the20



Davidson method [14℄. Here we will use it as an alternative way of omputing the e�etivegap ratio.The biased estimates an be loser to the atual eigenvalue than the Ritz values in someases. We an use the biased estimates in plae of the Ritz values in the formula of e�etivegap ratio ̂ = �kl � krklk � �1 + kr1k�kr + krkrk � �1 + kr1k :Beause the residual norms have more omplex relation with their indies, ̂ is no longer amonotoni funtion of kl and kr. However, both krklk and krkrk may be quite small if kl andkr are lose to m. If we use a brute-fore method to searh for a pair of kl and kr that givesthe maximum ̂ we may reah the onlusion that the pair kl = m�1 and kr = m is the best,whih it is obviously not. Our �rst implementation of this sheme uses the same restritionas in the dynami thik-restart Davidson method, that is, kl � kr � 3. The following tableshows the results of using this sheme.MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 699 324 280 9.94 11.3 60.9si6 2182 606 418 71.7 42.3 84.8This test shows that using ̂ produes roughly the same overall performane in the restartedLanzos method.This test demonstrates that ̂ has similar shortomings as . Sine allowing kl and kr tovary arbitrarily does not give the desired results, we an let them vary near some values thatare known to be good. In previous setion, we have seen that saving kx smallest Ritz valuesworks reasonably well. Now we will try to �nd the maximum ̂ near kx to see whether wean further enhane it e�etiveness. Sine this sheme only searhes for a loal maxim ̂, wewill avoid the pitfalls mentioned before. To onstrut a omputer program out this idea, weneed to deide exatly what range to searh for kl. Let's �rst onsider searh in the rangeof (kx; (kx +m)=2). The test results areMATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 575 283 274 5.84 3.72 7.26si6 888 285 416 23.2 9.60 21.5In �ve out of the six test ases, more time is used ompared to simply setting kl to kx. Nextwe restrit the above searh range with an additional ondition of �kx � �kl � �kx + krkxk.The following table lists the results of using this sheme to determine what Ritz pairs tosave. MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 517 293 298 4.45 3.03 4.59si6 1181 277 432 27.8 7.74 17.221



The time used to solve the test problems is signi�antly redued ompared to the previousimplementation. The only ase that more time is used than the optimal �xed thiknesssheme is solving the si6 test problem with m = 100. Overall, this sheme leads to goodperformane for the restarted Lanzos method.Near the end of the previous subsetion, we have tested a sheme of saving kx smallestRitz values and also ensuring the minimal gap ratio is ahieved. Instead of heking that is larger than the minimal value, we an alternatively making sure ̂ is larger than theminimal value. The following table lists the test results of using this alternative sheme.MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 474 297 298 4.27 3.04 4.55si6 1463 277 416 34.8 7.38 16.1This set of results are roughly the same as using  instead of ̂. In addition, with either oneof the modi�ations, the thik-restart Lanzos method uses about the same amount of timeand iterations as simply saving kx smallest Ritz values. The main reason for this is thatsaving kx Ritz pairs already ensure the minimal gap ratio for the two test problems.Similar to replaing  with ̂ when maximizing the gap ratio, we an also replae  witĥ when maximizing �, i.e., maximizing (m � k)̂. The following table ontains the resultsof maximizing (m� k)̂ under the onstraint of kl < kr �min(m� neig; 2(m� n)=5).MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 465 303 281 4.68 3.61 7.21si6 1786 501 279 46.6 15.2 13.1The orresponding results of maximizing (m�k) is shown in the last table of subsetion 5.2.Comparing the two tables, we see that slightly more iterations and time are used whenmaximizing (m� k)̂.With the limited number of tests performed in here, we do not see a lear advantageof using the biased estimate when omputing the e�etive gap ratio. We will simply use whenever the e�etive gap ratio is needed in the remaining of this paper.5.5 Saving degenerate Ritz pairsOne of the heuristis not yet onsidered is related to degeneraies. If two Ritz values arenearly idential and one of them is to be saved, we should save them both. In a Lanzosmethod implemented in the oating-point arithmeti, the Ritz values orresponding to thedegenerate eigenvalues are never exatly idential to eah other. The main diÆulty toimplement this heuristi is how to determine degeneraies. The riteria we use for judg-ing whether or not two Ritz values will eventually onverge to two idential eigenvalues iswhether their trust region overlap. In this subsetion we will explore a few di�erent ways ofimplementing this strategy. 22



To limit the number of tests to perform, we start by using this heuristi as a modi�ationto seleting k based on Equation 10. In other word, when omputing the smallest eigenvalues,we �rst set kr = m and kl = kx, then modify kl to inlude Ritz values that are lose to�kx. To determine whether �i and �i+1 ould be onsidered as degenerate, our �rst test is�i > �i+1 � kri+1k. Using this riteria, the results of solving the two silion luster testproblems are MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 552 292 295 5.23 3.05 4.58si6 1218 408 412 29.3 11.2 16.0The modi�ation redues the iterations for larger m when solve si4 test problem but thesame is not true for si6 test problem.The seond riteria for testing whether two Ritz values ould eventually onverge to thesame eigenvalue is �i + krik > �i+1 and the time and the iterations used to solve the twosilion luster test problems areMATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 600 294 297 5.47 3.07 4.64si6 1839 275 412 43.0 7.37 16.4When the basis size is 20, both above modi�ations inrease the time and iterations usedompared to the original sheme shown in subsetion 5.3.The previous two riteria for testing degeneraies are ombined to form the third test.In this ase, both �i > �i+1�kri+1k and �i + krik > �i+1 have to be satis�ed in order for �iand �i+1 to be onsidered degenerate and the results of using this test riteria areMATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 533 294 297 4.65 3.02 4.60si6 1458 276 412 33.3 7.39 16.1Sine both �i and �i+1 are expeted to derease in the future iterations and kri+1k isusually larger than krik, we modi�ed the above test to be �i � krik > �i+1 � kri+1k and�i + krik > �i+1. With this test, the trust region of �i is ompletely overed by that of �i+1.The resulting time and iterations used by the thik-restart Lanzos method areMATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 534 296 297 4.78 3.06 4.60si6 1323 277 412 29.5 7.39 16.0
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Comparing the results of using these four set of testing riteria for determining potentialdegeneraies, we see that the time and iterations used with small basis size (m = 20) havebeen steadily dereasing. However, the time and iterations used with larger basis sizes arealmost the same. For future disussion, we will use the last set of testing riteria.Sine the idea of guaranteeing minimal gap ratio was found to be useful when the basissize is small, we try to ombine this heuristi and the above tests for degeneray to seewhether or not the resulting sheme is even better for small basis size. The resulting timeand iterations used by the restarted Lanzos method areMATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 504 296 297 4.49 3.06 4.60si6 1395 277 415 33.8 7.46 16.3The set of results are roughly the same as modifying the strategy of saving kx smallestRitz pairs to ensure the minimal gap ratio is ahieved, see subsetion 5.3. The additionalmodi�ation of saving those Ritz values that are potentially degenerate does not signi�antlyhange the overall e�etiveness of the eigenvalue method. Sine both modi�ations are verysimple to implement, we an use both of them without signi�antly ost and we will do soin the future tests.The same two heuristis an also be easily applied to the strategy of saving nearly on-verged Ritz pairs, see subsetion 4.3. The time and iterations used with this modi�ed versionof the strategy are as follows,MATVEC time (se)m = 20 m = 50 m = 100 m = 20 m = 50 m = 100si4 504 303 274 4.38 3.40 5.87si6 1395 279 275 34.0 7.82 11.9Compared with the results without these two modi�ations, see subsetion 4.3, the modi�edsheme is onsiderably more e�etive when the basis size is small. Compared with the shemewhih only has the modi�ation to guarantee the minimal gap ration, see the last experimentof subsetion 5.3, we see that the newly added modi�ation of saving degenerate eigenvaluesdoes not signi�antly hange the overall performane.6 Putting it togetherIn proeeding setions, we have identi�ed four basi strategies of determining what and howmany Ritz pairs to save for the thik-restart sheme, (1) saving a number of Ritz pairs basedon indies, (2) saving a number of Ritz pairs based on residual norms, (3) saving Ritz pairs tomaximize the e�etive gap ratio  and (4) saving Ritz pairs to maximize �. We have testeda number of formulae for the �rst two shemes and ahieved a reasonably good performaneon the test problems. In their simplest forms, the last two shemes save too many Ritz pairsin most test ases and are only e�etive in reduing the number of iterations. Beause they24



save too many Ritz pairs, eah iteration is more expensive on average. This leads to moretime being used by the Lanzos method with these two restarting strategies.We have experimented with modifying the four basi strategies by (1) saving the un-wanted Ritz values in addition to the wanted one, (2) foring the last two shemes to saveless Ritz pairs, (3) using an alternative formula for the e�etive gap ratio, (4) maintaininga reasonable gap ratio, and (5) saving potentially degenerate Ritz pairs. When a relativelysmall portion of the Lanzos basis is saved during restarting, inluding additional unwantedRitz pairs an redue the number of iterations. In our tests, this happens when the basissize is 50 or 100. When the number of Ritz pairs saved is lose to the basis size m, savingadditional unwanted Ritz pairs generally auses more time to be used. This is the ase whenthe basis size is lose to the number of eigenvalues wanted. If we �rst hoose a moderatesize k then try to maximizing , the di�erene between kl and kr is �xed and the resultinghoies often lead to better performane than allowing kl and kr to beome arbitrarily lose.Computing the gap ratio using the biased estimates of the eigenvalues do not signi�antlyalter the overall e�etiveness of the eigenvalue method ompared to omputing gap ratiousing Ritz values. The last two modi�ations of maintaining a reasonable gap ratio andsaving degenerate Ritz pairs are relatively inexpensive to implement and fairly useful whenthe basis size is lose the the number of eigenvalues wanted.As an example of how to use all the di�erent heuristis, we will desribe our �nal imple-mentation of the four restarting strategies.1. Index based sheme When trying to �nd a number of the smallest eigenvalues, ateah restart, this sheme seletskl = n +min�neig; (m� n)(25 + neig10m)�smallest Ritz pairs. This basi hoie is modi�ed to ensure a minimal gap ratio is ahieved,see subsetion 5.3 and potentially degenerate Ritz pairs are saved, see subsetion 5.5. Nounwanted Ritz pairs are saved in this ase (kr = m).2. Residual norm based sheme This sheme saves Ritz pairs near the wanted eigen-values and have residual norms smaller than rs = max(2rt+1;prmaxrt), see subsetion 4.3.Two modi�ations are applied after the basi steps are taken, they ensure a reasonable gapratio is ahieved and save potentially degenerate Ritz pairs. No unwanted Ritz pairs aresaved.3. Maximizing e�etive gap ratio This sheme �rst determines the number Ritz pairsto be saved, k = max (neig; (3m+ 2n)=5), then searh for a ombination of kl and kr thatgives the largest . The above formula gives the following relation for kl and kr is kl =kr +min(m� neig; 2(m� n)=5). No further modi�ation is applied.4. Maximizing progress This sheme searh through all possible hoies of kl and kr tomaximize the value of � = (m � k) � . The onstraint on kl and kr is kl � kr � min(m �neig; 2(m� n)=5). 25



Table 5: Time and iterations used to ompute the �ve smallest eigenvalues of InGaAs9k testproblem. MATVEC time (se)index sheme 1469 144.6residual sheme 2813 274.2max  3461 336.4max � 984 104.2
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Figure 4: The time (seonds) used to �nd di�erent number of eigenvalues of the InGaAs9ktest problem.Table 5 lists how these four shemes perform when omputing the �ve smallest eigenvaluesof the InGaAs9k test problem. The elapsed time is measured on 32 proessors of a CrayT3E-900. Compared to the timing results shown in Figure 1, we see that the Lanzos methodwith restarting sheme one and four uses signi�antly less time than the minimal time usedwith the �xed thikness sheme.In many eletroni struture alulations, a large number of eigenvalues and eigenvetorsare omputed. Figure 4 demonstrates how the thik-restart Lanzos method sales as thenumber of eigenvalues inreases. In this test, the basis size used is always neig + 20. Inother word, the Lanzos only need workspae to store 21 vetors, 20 for the Lanzos vetors,one for the residual vetor. The neig vetors needed to store the eigenvetors are used by26



the program to store Ritz vetors as well. From the plot we see that the time required toompute the smallest eigenvalue is almost the same as omputing two smallest ones. Whenthe number of eigenvalues to be omputed is between 2 and 32, the last two restartingshemes are slightly better than the �rst two. Using one of the last two restarting shemes,doubling the number of eigenvalues, the restarted Lanzos method takes about 45 perentmore time. When omputing more than 32 eigenvalues, in other words, when neig > m=2, the�rst two restarting shemes beome more ompetitive than the last two. In the range tested,the Lanzos method with the �rst sheme uses 65 perent more time when the numberof eigenvalues doubles, and the Lanzos method with the seond restarting sheme usesabout 55 perent more time. No matter whih restarting strategy is used, the thik-restartLanzos method sales sublinearly with the number of eigenvalues. This suggests that thethik-restart Lanzos method may be used to ompute a large number of eigenvalues.In general, the behavior of the thik-restart Lanzos method is determined by the detailsof the spetrum distribution. The fat that the optimal thikness is signi�antly di�erentfor si4 and si6 test problem when m = 100 demonstrates this point learly. Through thetests, we have demonstrated the importane of developing good restarting strategy and haveshowed how to implement the four di�erent restarting shemes. Our tests shown that thethik-restart Lanzos using these restarting strategies is apable of eÆiently omputing alarge number of eigenvalues and eigenvetors of a large matrix.Referenes[1℄ J. Baglama, D. Calvetti, and L. Reihel. Iterative methods for the omputation of afew eigenvalues of a large symmetri matrix. BIT, 36:400{421, 1996.[2℄ D. Calvetti, L. Reihel, and D. Sorensen. An impliitly restarted Lanzos method forlarge symmetri eigenvalue problems. Eletroni Transations on Numerial Analysis,2:1{21, 1994.[3℄ J. R. Chelikowsky, N. Troullier, and Y. Saad. Finite-di�erene-pseudopotential method:eletroni struture alulations without a basis. Phys. Rev. Lett., 72:1240{3, 1994.[4℄ J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad. Higher order �nite di�erenepseudopotential method: an appliation to diatomi moleules. Phys. Rev. B, 50:11355{11364, 1994.[5℄ Ernest R. Davidson. The iterative alulation of a few of the lowest eigenvalues andorresponding eigenvetors of large real-symmetri matries. J. Comput. Phys., 17:87{94, 1975.[6℄ Ernest R. Davidson. Super-matrix methods. Computer Physis Communiations, 53:49{60, 1989.[7℄ G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins UniversityPress, Baltimore, MD 21211, third edition, 1996.27
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